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Abstract

A cryptographic technique called signcryption combines the role of digital sig-

nature and encryption in a single logical step. Signcryption provides message

confidentiality and authenticity at same time. A generalized signcryption scheme

provides the extra features, it works in signcryption mode when both confiden-

tiality and authenticity are required and it works in signature mode or encryption

mode when one of them is required. In this thesis, we extend the Gupta and

Kumar’s signcryption scheme to a generalized signcryption scheme. The proposed

scheme provides extra features, it works in three different modes such as signcryp-

tion mode, signature only mode, encryption only mode. The security of scheme

depends on Elliptic Curve Discrete Logarithm Problem (ECDLP) which is cur-

rently secure. The analysis of the scheme shows that it has resistance against

many known cryptographic attacks. The proposed scheme has the security fea-

tures of non-repudiation, unforgeability, message confidentiality, forward secrecy,

integrity, authentication and unforgeability. The correctness and cost analysis of

the proposed scheme is presented which prove the security and efficiency of the

scheme.
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Chapter 1

Introduction

Cryptography [1] is the study of the transmission of a message in such a way that

it cannot be read by any unauthorized party. It is the technique that uses math-

ematical functions for protecting the data or information from adversaries. Using

an encryption algorithm [2], the initial message known as plaintext is translated

into a ciphertext for transmission to the public network. The ciphertext is then

converted back to plaintext through the decryption algorithm by the receiver or

an authorised individual. For encryption and decryption, both the sender and re-

cipient use secret information (known only to the sender and receiver). This secret

information is known as a key. The whole structure is called a cryptosystem. The

security of cryptosystem’s depends on the secret key.

The cryptographic scheme is classified into two primary groups, namely symmetric

key cryptography and asymmetric key cryptography. In symmetric key encryption

only one key is used which is only known to the sender and reciever. Examples

of symmetric key encryption [3] are DES [4] and AES [5]. In this strategy, the

main issue is key delivery between the sender and the receiver. When we have

thousands of users to connect with each other, it becomes a significant challenge

to allocate the key among all the participants. Diffie and Helman [6] introduced

the concept of asymmetric key cryptography to address this problem, which is also

known as Public Key Cryptography (PKC). In PKC, participants has two forms of

1



Introduction 2

encryption keys, one is a public key that is made public and the other is a private

key. RSA [7] and ElGamal [8] are the examples of asymmetric key cryptography.

An authentication mechanism that allows the sender of a message to attach a code

that acts as a signature is called a digital signature which is an electronic equivalent

of a person’s physical signature [9]. Digital signatures consist of three algorithms:

key generation, generation of signatures, and verification of the signatures.

For decades, it has been a tradition for the originator of the message to write

his/her signature on it and then seal it in an envelope before handing it over to

a deliverer in order to prevent forgery and maintain secrecy of the contents of a

letter. The way people perform safe and authenticated communications has been

revolutionized by public key cryptography, discovered almost two decades ago. It

is now possible for individuals who have never interacted before to connect with

each other through both open and inaccessible networks such as the internet in a

safe and authenticated manner. In doing so, the same two-step technique has been

implemented. The sender will sign it with a digital signature scheme, and then

encrypt the message using a private key encryption algorithm under a randomly

selected message encryption key, before a message is sent out. The key for random

message encryption will then be encrypted using the public key of the receiver.

This two-step technique is called signature-then-encryption. The weaknesses in

signature then encryption are: amount of bits, computational cost.

1.1 Introduction to Domain

• The equation of the form y2 = x3 + ax + b mod p is called Weierstrass

equation, where p > 3 be any prime and a, b are Weierstrass coefficients and

they are selected from the finite field Fp. The curve is said to be smooth if

the discriminant 4a3 − 27b2 6= 0 and this curve is called elliptic curve.

• Confidentiality: It should be infeasible for an adaptive attacker to access

any secret information from the encrypted text without the knowledge of the

private key of the sender or designated receiver.
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• Unforgeability: For an adaptive attacker to disguise as a sincere sender

in generating an accurate encrypted text that can be recognized by the

decryption algorithm, it should be computationally-infeasible.

• Non-repudiation: The receiver should have the potential to show to a

third party that the signcrypted text sending by the authentic sender. This

means that his previously encrypted messages will not be rejected by the

sender.

• Integrity: It should be possible for the receiver to check that the message

received is the same that was sent by the sender.

• Public verifiability: Any third party (judge) without the need for a recip-

ient’s private key can verify that the signcrypted text is valid or not.

• Forward secrecy: If the sender’s secret key is stolen, no one should be able

to retrieve plaintext from previously encrypted messages. Without forward

secrecy, if the secret key is stolen, all previous released messages will no

longer be trustworthy in a encryption scheme. As the risk of key leakage is

becoming more severe as cryptographic computations are more commonly

conducted on poorly secured devices such as cell phones. In such schemes,

forward confidentiality appears to be an important feature.

1.2 Literature Review

In 1997, Zheng [10] introduced a new cryptographic technique called ‘signcryption’

which fulfills both the functions of digital signature and encryption in a logically

single step. Its cost is significantly lower than that needed by signature-then-

encryption technique. Not all messages require the features of confidentiality as

well as authenticity. If only one of the two features is needed then the signcryp-

tion scheme is not effective. According to Zheng, signcryption can be replaced

by signature-then-encryption algorithm in this scenario. Thus, we must use three

cryptographic algorithms to solve the problem. Encryption, signature and sign-

cryption as required and they termed as generalized signcryption.
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Many variants of signcryption schemes have been proposed since 1997. Elliptic

curve cryptography was suggested by Koblitz [11] and Miller [12] in 1985. In 1999,

Imai and Zheng [13] used the elliptic curve cryptography (ECC) in signcryption

and suggested a signcryption scheme whose security depends on the eliptic curve

discrete logarithm problem (ECDLP) [14]. They showed that signcryption depends

on the ECC has nearly 58% computational cost and 40% of communication cost

expenses are lower than the cost required by signature then encryption scheme

[15]. Later on, Bao and Deng [16] pointed out that the judge could not check the

sender’s authenticity without the secret key of the receiver, so they have extended

Zheng’s signcryption scheme in such a way that judge can verify the data without

the secret key of the receiver. Gamage [17] proposed a signcryption scheme that

allows anyone to verify sender’s authentication, but only firewalls have been fixed

in the application field. Jung [18] figure out that scheme of Zheng does not provide

forward secrecy when the sender’s secret key is illuminated. In 2005, Ren-Junn

Hwang [19] proposed an eliptic curve discrete logarithm problem (ECDLP) and

eliptic curve Diffie Helman problem (ECDHP) [20] based signcryption scheme with

additional forward secrecy and public verification.

A definition of digital signature algorithm (DSA) was used by Shin [21] and sug-

gested a DSA verifiable signcryption scheme, but there is no forward secrecy in

the scheme. Raylin Tso [22] suggested a signature scheme depends on the tough-

ness of the elliptic curve digital signature algorithm (ECDSA). The different ECC

based signature schemes proposed in the literature are given in a recent overview

[23]. In particular, confidentiality, integrity, authentication, unforgeability, non-

repudiation, forward secrecy, and public verification were compared in terms of

security attributes. For more signcryption schemes we refer to [24–29].

In 2006, Han and Yang [30] proposed a new idea of signcryption system, that

can be used separately as an encryption system, and as a signature system when

required. They termed the new primitive as generalized signcryption.

There schemes is based on elliptic curves. Wang [31] enhanced the scheme [30] and

provided generalized signcryption scheme security concepts. In the year 2010, Yu

et al [32] introduced an ‘identity-based GSC’ system and a security model. Kush-

wah and Lal [33] simplified the system’s security model [32] and recommended a
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more powerful GSC identity-based system in 2011. In 2014, Zhou et al [34] sug-

gested a certificateless GSC scheme that could survive a KGC malicious-butpassive

attack [35]. In the traditional model, Wei et al [36] proposed an identity-based

GSC scheme and extended it in 2015 to big data protection. Zhou [37] identi-

fied and strengthened the assault on the scheme [38] in the same year. Han and

Lu [39] consequently recommended, in the traditional model, an attribute-based

GSC scheme and extended it to online social networks. In 2016, Zhou et al [40],

[41] expanded GSC, added two new definitions ‘generalized proxy signcryption

and generalized signcryption’ and suggested a concrete scheme. Zhang et al [42]

suggested a certificateless lightweight certification.

1.3 Thesis Contribution

In this research, the Kumar and Gupta’s signcryption scheme [43] has been ex-

tended to a generalized signcryption scheme. This scheme [43] uses elliptic curves

for secure and authenticated message delivery, which performs all the functions

of digital signature and encryption with a cost less than that required by the

current standard signature than encryption method. The security of this scheme

depends on the ECDLP and ECDHP, which are currently secure. The scheme

provides integrity, message confidentiality, forward secrecy, unforgeability, verifi-

cation, and non-repudiation security attributes. The computational time of this

scheme is little bit higher than the Zheng and Imai scheme [13] but it is more se-

cure. The proposed scheme performs double functions when both confidentiality

and authenticity are required and it performs a single function without any addi-

tional calculations when confidentiality and authenticity required separately. The

proposed scheme fulfils all the security attributes and it is more resistant against

various known attacks.

1.4 Organization of Thesis

The rest of the thesis is organised as follows:

In Chapter 1, the introduction of cryptography, digital signature and basic terms
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related to thesis will be discussed.

In Chapter 2, some basic concepts and material related to basic algebra and el-

liptic curve cryptography which facilitates the reader’s best understanding of the

terms are presented.

In Chapter 3, the basic terminology and concepts related to signcryption are pre-

sented.

In Chapter 4, the proposed generalized signcryption scheme which is based on

elliptic curve will be discussed.

In Chapter 5, the analysis of proposed generalized signcryption scheme is pre-

sented.



Chapter 2

Premilinaries

The objective of this chapter is to present some basic definitions, cryptographic

backgrounds from algebra and number theory that are needed for a good un-

derstanding of the work done in this thesis. The terms related to elliptic curve

cryptography will also be discussed in the later sections.

2.1 Mathematical Background

Definition 2.1.1.

“A group G, sometimes denoted by {G, ·} is a set of elements with a binary

operation, denoted by ·, that associates to each ordered pair (a, b) of elements in

G an element (a · b) in G, such that the following axioms are obeyed:

1. Closure: If a and b belong to G, then a · b is also in G.

2. Associative: a · (b · c) = (a · b) · c for all a, b, c in G.

3. Identity element: There is an element e in G such that a · e = e · a = a

for all a in G.

4. Inverse element: For each a in G there is an element a
′

in G such that

a · a′
= a

′ · a = e

7
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A group G is said to be abelian if it satisfies the following additional condition

a · b = b · a for all a, b in G.

A group G is cyclic if every element of G is a power ak (k is an integer) of a

fixed element a ∈ G. The element a is said to generate the group G, or to be a

generator of G ” [1]

Example 2.1.2.

The following are the examples of a group and cyclic group.

1. The set of real numbers R, complex numbers C, integers Z all are groups

under +.

2. Set of integers Z is not a group under multiplication.

3. All the characteristic of being a group are retained in the set of integers Z.

In addition all the elements of Z can be generated by 1 and -1 with respect

to addition which are called generators.

Definition 2.1.3.

“A nonempty set (F,+, ·) together with binary operations ‘+’ and ‘·’ is called field

F , if the following properties hold:

1. F is abelian under addition.

2. F forms an abelian group under multiplication (only nonzero elements).

3. Multiplication is distributed over addition in F .” [44]

Example 2.1.4.

Some examples of field are given below:

1. Set of real numbers R and complex numbers C are fields.

2. Set of Z is not a field because the multiplicative inverse does not hold in Z.

Definition 2.1.5.

“The elements of Galois Field GF (pn) is defined as,

GF (pn) = (0, 1, 2, . . . p−1)∪ (p, p+1, p+2 . . . p+p−1)∪ (p2, p2 +1, p2 +2, . . . p2 +

p−1)∪ ...∪(pn−1, pn−1 +1, pn−1 +2. . . . pn−1 +p−1) where n is any integer and p is

prime. The order of Galois field is given by pn while p is called the characteristics

of field.” [45]
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Example 2.1.6.

GF (5) = (0, 1, 2, 3, 4) which consists of 5 elements where each of them is a poly-

nomial of degree 0.

Definition 2.1.7.

For any two given integers a and b to find an integer c such that a · c ≡ 1 mod b

and a−1 ≡ c mod b, where 1 ≤ c ≤ b − 1. The multiplicative inverse of a in

mod b is c if a is relatively prime to b that is gcd(a, b) = 1.

Definition 2.1.8.

“Given x, y ∈ Zp such that

xn = y mod p

then finding n is known as discrete logarithm problem.”[46]

Algorithm 2.1.9 (Euclidean Algorithm).

To find the gcd of the integers P and Q, below mentioned steps are to be followed.

Input: Two integers P and Q

Output: gcd(P,Q)

1. If P = 0 then gcd(P,Q) = Q, since gcd(0, Q) = Q and stop.

2. If Q = 0 then gcd(P,Q) = P , since gcd(P, 0) = Q and stop.

3. Write P = Q.B + R where B is quotient and R is reminder.

4. Find gcd(Q,R), since gcd(P,Q)=gcd(Q,R)

Algorithm 2.1.10 (Extended Euclid Algorithm).

To find the inverse of a under modulo m, below mentioned steps are to be followed:

Input: a and n

Output: a−1 mod n

1. Set (X, Y, Z) = (1, 0, n) and (P,Q,R) = (0, 1, a)

2. If R = 0, return that the inverse does not exist and Z is the gcd of (a, n).

3. If R = 1, return that the inverse is P and Q is the gcd of (a, n)
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4. Store T = bZ/Rc where b.c represents the floor value.

5. (L,M,N) = (X − TP, Y − TQ,Z − TR)

6. (X, Y, Z) = (P,Q,R)

7. (X, Y, Z) = (L,M,N)

Go back to step no.2

Table 2.1 and Table 2.2 shows the addition and multiplication of field GF13.

+ 0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 1 2 3 4 5 6 7 8 9 10 11 12

1 1 2 3 4 5 6 7 8 9 10 11 12 0

2 3 4 5 6 7 8 9 10 11 12 0 1 2

3 4 5 6 7 8 9 10 11 12 0 1 2 3

4 5 6 7 8 9 10 11 12 0 1 2 3 4

5 6 7 8 9 10 11 12 0 1 2 3 4 5

6 7 8 9 10 11 12 0 1 2 3 4 5 6

7 8 9 10 11 12 0 1 2 3 4 5 6 7

8 9 10 11 12 0 1 2 3 4 5 6 7 8

9 10 11 12 0 1 2 3 4 5 6 7 8 9

10 11 12 0 1 2 3 4 5 6 7 8 9 10

11 12 0 1 2 3 4 5 6 7 8 9 10 11

12 0 1 2 3 4 5 6 7 8 9 10 11 12

Table 2.1: Addition in GF (13)

In Table 2.1 the two elements whose sum is 0 are additive inverses of each other

and in Table 2.2 the two elements whose multiplication is 1 are multiplicative

inverses of each other.
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× 0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9 10 11 12

2 0 2 4 6 8 10 12 1 3 5 7 9 11

3 0 3 6 9 12 2 5 8 11 1 4 7 10

4 0 4 8 12 3 7 11 2 6 10 1 5 9

5 0 5 10 2 7 12 4 9 1 6 11 3 8

6 0 6 12 5 11 4 10 3 9 2 8 1 7

7 0 7 1 8 2 9 3 10 4 11 3 10 4

8 0 8 3 11 6 1 9 4 12 7 2 10 5

9 0 9 5 1 10 6 2 11 7 3 12 8 4

10 0 10 7 4 1 11 8 5 2 12 9 6 3

11 0 11 9 7 5 3 1 12 10 8 6 4 2

12 0 12 11 10 9 8 7 6 5 4 3 2 1

Table 2.2: Multiplication in GF (13)

Definition 2.1.11.

“Trapdoor function is a function that is easy to compute in one direction but

difficult to compute in the reverse direction if some special information known as

‘Trapdoor’ is not known.”[47]

Figure 2.1: Trapdoor Function

Definition 2.1.12.

A hash function is a function that takes a collection of arbitrary-sized inputs
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and fits them into a table or other data structure with fixed-size components. The

widely used hashing algorithms are Secure Hash Algorithm (SHA).

Figure 2.2: Hash Function

Hash Function Properties

There are some properties of hash function are as follows:

1. It is easy to compute H(t), where t is the message.

2. If H(t) is given it is impossible to find t. So, it is one way hash function.

3. In weak collision resistance, if t and H(t) are given it is very difficult to find

t′ such that H(t) = H(t′).

4. In strong collision resistance, it is computationally in-feasible to find two

different inputs t1, t2 such that H(t1) = H(t2).

Theorem 2.1.13.

“Fermat’s theorem states that, If p is prime and a is a positive integer not

divisible by p then ap−1 − 1 ≡ 0 mod p”. [1]

Definition 2.1.14.

“An integer factorization problem is defined as, let m be a given number and

m ∈ Z, the problem of decomposition of m to the product of prime pα and qβ such

that m = pαqβ.”[46]
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2.2 Cryptographic Background

The word ‘cryptology’ is a mixture of two Greek words, kryptos (hidden) and logos

(words). It has two further types: cryptography and cryptanalysis.

Figure 2.3: Cryptology

2.2.1 Cryptography

Cryptography is the study of the transmission of a message in such a way that it

cannot be read by any unauthorized party. The original message is called plaintext

and encoded message is called ciphertext. An algorithm is necessary to convert the

plaintext message into ciphertext message is called an encryption algorithm [2].

The algorithm for decryption converts the ciphertext back into plaintext. For en-

cryption and decryption cryptographic schemes require special information, which

is exchanged between sender and recipient is known as a key. A cryptosystem con-

sists of a message space, a ciphertext space, a key space, an encryption algorithm

and a decryption algorithm. Based on key distribution, cryptography is classified

into two main groups. Symmetric key cryptography (Secret key cryptography)

and Asymmetric key cryptography (Public key cryptography).

Figure 2.4: Cryptography
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2.2.2 Symmetric key Cryptography

Symmetric key cryptography uses only one key to carry out encryption or de-

cryption. A collection of data that is used to encrypt and decrypt the data in a

symmetrical encryption is called a secret key. It often referred to as a private key.

It can be transmitted via secure channel between two parties. Example includes:

Data Encryption Standard (DES) [48], Dual Data Encryption Standard (2DES)

[49], Triple Data Encryption Standard (TDES) [50], Advanced Encryption Stan-

dard (AES) [51].

The main advantages of symmetric key cryptography are high speed, strength of

algorithms and availability of algorithms. The disadvantages are key management,

key distribution and limited security.

Figure 2.5: Symmetric key

2.2.3 Asymmetric key Cryptography

The biggest problem with private key encryption is that you need to have a way

to get the key to the party with whom you are sharing data. If someone gets their

hands on key, they can decrypt everything encrypted with that key. In 1976, Whit-

field Diffie and Martin Hellman introduced a new scheme known as asymmetric

key cryptography [6]. Two keys are used in asymmetric key cryptography, where

one key is used for data encryption and the other key is used for decryption. A

person generates two keys, one is kept secret, called a secret key, and the other key

is made public, called the public key. Since the encryption key is public, everyone
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can encrypt data, but only the individual with the decryption key can decrypt the

data. RSA [7] and DSA [52] are the examples of asymmetric key cryptography.

Figure 2.6: Asymmetric key

2.2.4 ElGamal Encryption Scheme

The ElGamal encryption scheme [8] in cryptography is an public key encryption

algorithm that is based on public-key cryptography [6]. It was proposed in 1985 by

Taher Elgamal. A variant of the ElGamal signature scheme is the Digital Signature

Algorithm (DSA) [52], which should not be confused with ElGamal encryption. Its

security depends on the difficulty associated with computing discrete logarithms

of a certain problem in G.

Encryption Algorithm

In this algorithm the domain parameters are (u, v, g) and private/public key pair

(b, B) where B = gb mod u and encoded message t in the range 0 ≤ t ≤ u− 1.

1. Choose an integer m in the range 1 ≤ m ≤ u− 1.

2. Compute c1 = gm mod u

3. Compute c2 = tBm mod u

4. Return ciphertext (c1, c2)
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Decryption Algorithm

In this algorithm the domain parameters are (u, v, g) with receiever’s private key

b and ciphertext (c1, c2).

1. Compute

t = cu−b−1c2 mod u

= (gm)u−b−1.t(gb)m

= t[(gu−1)m(gm)−b](gm)b

= t(1)m(gm)−b(gm)b, sincegu−1 ≡ 1

= t.1 since(gm)−b(gm)b = 1

= t

2. Return t

Example 2.2.1.

The detail example of above algorithm is given below:

Encryption Phase

The domain parameters of this encryption are u = 283, v = 47, g = 60, Bob’s

public key, B = 216 and encoded message, t = 101, such that 0 ≤ t ≤ 282

1. Alice selects a random integere m = 36 in the range [2, 45]

2. Alice computes c1 = gm mod u = 6036 mod 283 = 78.

3. Alice computes c2 = tBm mod u = (101)(21636) mod 283 = 218.

4. Alice sends ciphertext (c1, c2) = (78, 218) to Bob

Decryption Phase

The domain parameters of decryption algorithm are u = 283, v = 47, g = 60,

Bob’s private key b = 7 and ciphertext (c1, c2) = (78, 218)
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1. Bob computes

t = cu−b−11c2 mod u

= (78283−7−1)(218) mod 283

= (116)(218) mod 283

= 101

2. Return t = 101

2.3 Cryptanalysis

Cryptanalysis is a technique used to crack the cryptosystem in order to extract

plaintext. It is also being analyzed to validate how efficient and stable a cryptosys-

tem is. The person doing cryptanlysis is referred to as a cryptanalyst. Cryptanal-

ysis is necessary if any of the following properties are lacking in a cryptosystem:

1. Confidentiality

2. Integrity

3. Authentication

4. Non-repudiation

There are several kinds of attacks, some of them are listed below:

1. Brute Force Attack

In this attack, an attacker is aware of the ciphertext and the decryption algorithm.

The attacker attempts to obtain the plaintext from ciphertext with every key from

the set of all possible keys. As the attacker has to search for any key available in

the key space, this attack takes a lot of time to accomplish the target. Attempting

all possible keys in a reasonable time frame is not feasible, then this attack is not

possible. That is, key space should be large enough to counter such attack.
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Figure 2.7: Brute Force Attack [53]

2. Ciphertexts only Attack

In this attack, the attacker knows only the ciphertext. Normally, the correspond-

ing plaintexts are not known. To obtain the corresponding plaintexts, he utilises

these known ciphertexts.

Figure 2.8: Ciphertexts only Attack [54]

3. Chosen Ciphertexts Attack

In this attack the attacker has access to some ciphertexts to decrypt and tries to

obtain plaintext. He may try to get the key or the plaintexts of other ciphertexts

based on this known information.

Figure 2.9: Chosen Ciphertexts Attack [55]
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4. Chosen Plaintext Attack

In this attack, the attacker understands the plaintext and the corresponding ci-

phertext from which he tries to guess the key or obtains as much information as

possible.

Figure 2.10: Chosen Plaintext Attack [56]

5. Known Plaintext Attack

In this attack, there is some portion of plaintext as well as corresponding cipher-

text known to the attacker, which is further examined to get the full plaintext or

the decyption key.

Figure 2.11: Known Plaintext Attack [56]

6. Man-in-the-Middle Attack

When two parties attempt to agree on a key for safe communication. In order to

agree on a key without understanding them, the attacker positions himself between

them. The attacker chooses two keys to deceive the two groups. He uses one of

the keys by pretending to be the second party to make the first party agree on the

exchange of information. To mislead the second group, the other key is used. In

fact , the two sides assume that they are communicating with each other, but it is

the attacker who gets the data from both ends and then attacks the conversation.
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Figure 2.12: Man in the Middle Attack [57]

7. Forgery Attack

In this attack, without knowing the secret signing key of the signer the attacker

tried to forge a signature for the message. The word ‘forgery’ generally used to

message related attacks in digital signature.

Figure 2.13: Forgery Attack [58]

2.4 Elliptic Curve Cryptography

Elliptic curve cryptography (ECC) is a public-key cryptography technique based

on the algebraic structure of elliptic curves over finite fields. Over the past few

years, ECC has been gaining popularity steadily because of its capacity to provide

the same degree of protection. As the demand for devices to remain safe rises

due to the increase in the size of keys, drawing on limited mobile resources, this

trend will probably continue. That’s why understanding ECC in context is so
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important. For this reason, ECC is considered to be a public key cryptography’s

next generation implementation and more stable than RSA. Adopting ECC to

ensure high levels of both efficiency and protection also makes sense.

Symmetric RSA ECC

56 512 112

80 1024 160

112 2048 224

128 3072 256

192 7680 384

256 15360 521

Table 2.3: Nist recomended key sizes [59]

The major advantage of the use of elliptic curves is that the same security level

can be achieved by working in a field of 160 bits and hence elliptic curve solves

the problem of computational complexity to achieve the desired security extent.

In the next section, elliptic curve will be discussed in detail.

2.4.1 Weierstrass Equation

The equation of the type

y2 + u1xy + u3y = x
3

+ u2x
2 + u4x + u5

defined over a some field F, such as field of real numbers R, complex num-

bers C or any finite field Fp and known as Weierstrass equation [60]. Where

u1, u2, u3, u4, u5, u6 are called Weierstrass coefficients.

−v22v8 − 8v34 − 27v26 + 9v2v4v6 6= 0

where,

v2 = u2
1 + 4a2

v4 = 2u4 + u1u3

v6 = u2
3 + 4u6
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v8 = u2
1u6 + 4u2u6 − u1u3u4 + u2u

2
3 − u2

4

2.4.2 Eliptic Curve over Fp

In cryptography generally our focus is on simplified form of Weierstrass equation

which is

y2 = x3 + ax + b mod p (2.1)

Where a and b are Weierstrass coefficients and they are selected from a finite field

Fp. The curve is said to be smooth if the discriminant 4a3 − 27b2 6= 0 and this

curve is called elliptic curve.

Point Addition

Suppose we’ve got two points, U and V , on an elliptic curve E. The following

steps must be followed in order to add such points.

1. A straight line is passed from points U and V .

2. At some point, the straight line intersects the curve, say at S of E.

3. Next, we get the point W as the product of U and V . It’s only appropriate

to take the S negative, which is −S = (x,−y)

Point Doubling

Subsequent steps are used to apply a point U to itself,

1. Draw a U-tangent.

2. At some point, it intersects the curve, again regarded as S of E.

3. Next, to get the point W = 2U as the product of adding U to itself, it is

only necessary to take S negative.

Point at Infinity

For the addition of U to −U , the same method can be used. It is known to us that
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−U is essentially a reflection of U . So, it approaches infinity as straight line passes

from them. To describe a particular point located at infinity that is recognised as

a point towards infinity.

Mathematical Representation

To add a point U(x1, y1) and V (x2, y2) on elliptic curve (2.1). For graphical struc-

ture of point addition, a line must be drawn through them. Let the line pass

through U and V , the point slope form of L is:

L : y = sx + c

For the slope s, the following steps must be followed:

Case 1: If U 6= V , then

s =
y2 − y1
x2 − x1

(2.2)

Case 2: If U = V , then

s =
3x2

1 + a

2y1
(2.3)

using basic algebra, the new point say W (x3, y3) acquired by adding U(x1, y1) and

V (x2, y2) has the following co-ordinates:

x3 = s2 − x1 − x2 (2.4)

y3 = s(x1 − x3)− y1 (2.5)

Example 2.4.1.

Let us consider the curve over F13, that is

y2 = x3 + 7x + 4 mod 13 (2.6)

Table 2.4 shows the points that lie on the curve (2.6). The elliptic curve points

addition for EF13(7, 4) is shown in Table 2.5. Let U(9, 4) and V (12, 10) be two

points on eliptic curve (2.6). Then the formulas in (2.4) and (2.5) provide us with
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x y2 y1 y2 U(x,y) U
′
(x,y)

0 4 2 11 (0,2) (0,11)

1 12 5 8 (1,5) (1,8)

2 0 0 0 (2,0) -

3 0 0 0 (3,0) -

4 5 - - - -

5 8 - - - -

6 2 - - - -

7 6 - - - -

8 0 0 0 (8,0) -

9 3 4 9 (9,4) (9,9)

10 8 - - - -

11 8 - - - -

12 9 3 10 (12,3) (12,10)

Table 2.4: Eliptic curve points addition

the new point W (x3, y3). Evaluate the slope s by

s =
10− 4

12− 9
mod 13

=
6

3
mod 13

= 6(3−1) mod 13

By using Extended Euclidean algorithm,

s = (6)(9) mod 13

s = 2 mod 13

Put the value of s in (2.4) and (2.5), gives us:

x3 = (2)2 − 9− 12 mod 13

x3 = 9 mod 13

y3 = 2(9− 9)− 4 mod 13

y3 = 9 mod 13

so, W = (x3, y3) = (9, 9) is the addition of points. Now, let us add a point U(9, 4)
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into itself. To compute (2.2) as:

s =
3(9)2 + 7

2(4)
mod 13

s = 250× 8−1 mod 13

s = 250× 5 mod 13

s = 2

Put the value of s in (2.4) and (2.5), gives us:

x3 = (2)2 − 2(9) mod 13

x3 = 12

y3 = 2(9− 12)− 4 mod 13

y3 = 3

so, W = (x3, y3) = (12, 3)

+ ∞ (0,2) (0,11) (1,5) (1,8) (2,0) (3,0) (8,0) (9,4) (9,9) (12,3)(12,10)

∞ ∞ (0,2) (0,11) (1,5) (1,8) (2,0) (3,0) (8,0) (9,4) (9,9) (12,3) (12,10)

(0,2) (0,2) (12,3) ∞ (8,0) (9,9) (12,10) (9,4) (1,8) (1,5) (3,0) (2,0) (0,11)

(0,11) (0,11) ∞ (12,10) (9,4) (8,0) (12,3) (9,9) (1,5) (3,0) (1,8) (0,2) (2,0)

(1,5) (1,5) (8,0) (9,4) (12,10) ∞ (9,9) (12,3) (0,11) (2,0) (0,2) (1,8) (3,0)

(1,8) (1,8) (9,9) (8,0) ∞ (12,3) (9,4) (12,10) (0,2) (0,11) (2,0) (3,0) (1,5)

(2,0) (2,0) (12,10) (12,3) (9,9) (9,4) ∞ (8,0) (3,0) (1,8) (1,5) (0,11) (0,2)

(3,0) (3,0) (9,4) (9,9) (12,3) (12,10) (8,0) ∞ (2,0) (0,2) (0,11) (1,5) (1,8)

8,0 (8,0) (1,8) (1,5) (0,11) (0,2) (3,0) (2,0) ∞ (12,10) (12,3) (9,9) (9,4)

(9,4) (9,4) (1,5) (3,0) (2,0) (0,11) (1,8) (0,2) (12,10) (12,3) ∞ (8,0) (9,9)

(9,9) (9,9) (3,0) (1,8) (0,2) (2,0) (1,5) (0,11) (12,3) ∞ (12,10) (9,4) (8,0)

(12,3) (12,3) (2,0) (0,2) (1,8) (3,0) (0,11) (1,5) (9,9) (8,0) (9,4) (12,10) ∞

(12,10)(12,10) (0,11) (2,0) (3,0) (1,5) (0,2) (1,8) (9,4) (9,9) (8,0) ∞ (12,3)

Table 2.5: Addition of points of EF13(7, 4)
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2.4.3 Elliptic Curve Discrete Logarithm Problem

The elliptic curve discrete logarithm problem (ECDLP) is finding the number k

such that kP = Q given two points P and Q. Discrete logarithm of Q to the base

P is the term given to the number k. It’s impossible to come across k. ECDLP is

responsible for ECC’s complete security.

2.4.4 Diffie-Hellman Key Exchange Based for Eliptic Curve

Group

Alice and Bob need to share their keys so they can encrypt and decrypt the

messages in order to communicate in a secure fashion. In 1976, the idea was

given by Diffie and Hellman [6] to exchange keys over a public network without

compromising security. The scheme is designed with the help of a cyclic group

of elliptic curve points and safety relies on the complexity of overcoming ECDLP.

The following approach tells the whole story of Alice and Bob exchanging keys

using Diffie-Hellman key exchange protocol.

1. Alice and Bob mutually selects an elliptic curve E over a finite field Fq with

G is the base point of an eliptic curve E.

2. The random number dA ∈ {1, 2, 3, . . . n−1} is selected by Alice as her secret

key and compute her public key as PA = dAG.

3. Bob selects his private key dB ∈ {1, 2, 3, . . . n− 1} and calculates his public

key PB = dBG.

4. They both exchange their public keys PA and PB with each other.

5. Alice computed PAB = dBdA where PAB is used to find dA and dB as session

key security.

Example 2.4.2. Let sender A wants to send a message m = 21 to recipient B.

So, they must share their keys to encrypt and decrypt a message. Sender A and

recipient B mutually selects an elliptic curve y2 = x3 + 750x + 188 mod 751.
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G = (0, 376) is the base point of order n = 727 where 727(0, 376) = O. The

elliptic curve has also 727 number of points.

1. Sender A selects private key dA = 12 and compute public key as PA =

dA ·G = 12(0, 376) = (207, 215).

2. Recipient B selects private key dB = 17 and compute public key as PB =

dB ·G = 17(0, 376) = (556, 631).

3. They both exchange their PA = (207, 215) and PB = (556, 631) with each

other.

4. Sender A computed PAB = dBdA = 17(12) = 204 is used to find dA = 12

and dB = 17 as session key security.

2.5 Eliptic Curve Encryption Decryption

Elliptic curve is a technique of asymmetric key cryptography. For secure commu-

nication, each user have its own public and secret key.

2.5.1 Global Settings

These global parameters that involved in communication between sender (Alice)

and receiver (Bob).

1. The base point G such that nG = O. where n is the smallest prime number

and O is point at infinity.

2. A prime integer modulo q and constants u and v.

2.5.2 Key Generation Phase

1. Alice selects secret key dA from the set {1, 2, . . . n− 1} and compute public

key as PA = dA.G

2. Bob selects his private key dB < n and compute his public key as PB = dB.G
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2.5.3 Encryption Phase

Alice send a message t to Bob by using ECC scheme. For this t is converted

into a elliptic curve point Qt. Alice choose a random integer k and calculate the

ciphertext QC as the elliptic curve pair of points using Bob’s public key PB as

follows.

QC = (kG,Qt + kPB) mod p

2.5.4 Decryption Phase

After receiving ciphertext QC , Bob decrypt the message back into original form

by multiplying kG with private key of Bob dB and than add the result into second

ciphertext pair Qt + kPB

Qt + kPB − dB(kG) = Qt + kdBG− kdBG

= Qt

which is plaintext point, corresponding to plaintext message t.

Example 2.5.1.

Let us consider an elliptic curve y2 = x3 − x + 188 mod 751. Let G = (0, 376)

be the base point. Total number of points and order of this curve is 727 where

727(0, 376) = O. Let Alice wants to send a message Qt to Bob by using ECC

encryption. Alice selects her secret key dA = 6 and compute public key as PA =

6(0, 376) = (6, 390) Bob selects his secret key dB = 5 and compute public key as

PB = 5(0, 376) = (188, 657). Alice chooses the secret random number k = 113 to

encrypt the original message Qt = (443, 253).

QC = [kG,Qt + kPB] mod p

= [113(0, 376), (443, 253) + 113(188, 657)] mod 751

= [(34, 633), (443, 253) + (529, 254)] mod 751

= [(34, 633), (418, 18)]
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Alice sends QC = [(34, 633), (418, 18)] to Bob. After receiving QC Bob decrypt it

to get Qt.

Qt = [Qt + kPB − dB(kG)] mod p

= [(443, 253) + 113(188, 657)− 5(34, 633)] mod 751

= [(443, 253) + (529, 254)− (529, 254)] mod 751

= (443, 253)



Chapter 3

Digital Signcryption

The way people perform safe and authenticated communications has been revo-

lutionized by public key cryptography [6], discovered almost two decades ago. It

is now possible for individuals who have never been interacted before to connect

with each other through both open and inaccessible networks such as the internet

in a safe and authenticated manner. In doing so, the same two-step technique has

been implemented. The sender of the message will sign it with a digital signature

scheme, and then encrypt the message using a private key encryption algorithm

under a randomly selected message encryption key, before a message is sent out.

Signature generation and encryption consume machine cycles, and add an original

message with “expanded” bits as well. The cost of a cryptographic operation on

a message is thus usually measured in the expansion rate of the message and in

the computing time expended by both the sender and the receiver. The cost of

sending a message in a safe and anthenticated manner using the existing tradi-

tional signature-then-encryption is approximately the sum of the cost for digital

signature and that for encryption [15].

The question about the cost of delivery of secure and authenticated messages,

namely whether it is possible to transfer a message of arbitrary length in a secure

and authenticated manner at an expense lower than that required by signature-

then-encryption. Since the invention of public key cryptography, this topic appears

to have never been discussed in literature [28]. In 1997, Yuliang Zheng [10] descov-

ers a new primitive called signcryption which executes the functions of both digital

30
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signature and encryption at the same time, and it costs significally less than the re-

quired traditionally signature then encryption scheme. It will effectively eliminate

computing costs and communication overheads [15]. Signcryption includes both

digital signatures and encryption mechanisms with properties in a manner that is

more suitable than independent signing and encryption. This means that, under

a specific security paradigm, at least certain dimensions of its reliability (such

as computing time) are better than any combination of digital signature and en-

cryption schemes [15]. Over the years, there are so many signcryption schemes

that have been suggested, each with their own challenges and drawbacks, while

delivering varying standards of security and computational costs.

3.1 Features of Signcryption Scheme

There are usually three algorithms in a signcryption scheme: Key Generation

(Gen), Signcryption (SC), and Unsigncryption (USC). A typicall signcryption

scheme provides the following properties:

1. Correctness: Every signcryption scheme should be provable accurate.

2. Efficiency: In any signcryption scheme computing cost and communication

overhead should be lower than best signature then encryption schemes with

the same offered features.

3. Security: The security characteristics of an encryption scheme and a digital

signature should be met simultaneously by a signcryption scheme. These ad-

ditional features primarily include: confidentiality, unforgeability, integrity,

and non-repudiation. Other features such as public authentication and for-

ward secrecy of message confidentiality are offered by some signcryption

schemes. The security of such features normally relies on the underlying

hard problem. For instance, the elliptic curve discrete logarithm problem in

the scheme is based on ECC.
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3.2 Zheng’s Signcryption Scheme

Zheng [10] discovers a new cryptographic premitive called “signcryption” which

fulfills both the functions of digital signature and encryption in a logically single

step. Its cost is significantly lower than that needed by signature-then-encryption

technique. In the following section, we take a brief look of this scheme.

Notations

• t : Original message

• u : A large prime number

• v : A large prime factor of u− 1

• x : A randomly chosen number from {1, 2, . . . v − 1}

• h : One way hash function to get 128-bit hash values

• Hk : Keyed hash function

• E : A private key encryption algorithm

• D : A private key decryption algorithm

Key Generation

1. Alice selects private key dA from the range {1, 2, . . . u − 1} and compute

public key PA = xdA mod u.

2. Bob selects private key dB from the range {1, 2, . . . u−1} and compute public

key PB = xdB mod u.

Algorithm 3.2.1. (Signcryption)

Input: (t, dA, PB)

Output: (c, s)

1. Alice selects an integer x ∈ {1, 2, . . . u− 1}.
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2. She use public key of Bob PB, the integer x and one way hash function h to

compute

z = h(PBx) mod u

3. She divides 128 bit value into two parts of 64 bits. They can be numbered

z1 and z2.

4. Alice encrypts the message t by using the public key encryption scheme E

with the key z1. It will give ciphertext

c = Ez1(t)

5. She uses the key z2 message t and one way keyed hash Hk value to compute

r.

r = Hkz2(t)

6. The signature parameter s is computed by Alice. By using x, the secret key

dA, the large prime number v and r to get

s =
x

r + dA
mod v

7. The values c, r and s are now available to Alice. In order to complete the

task, she send these values to Bob.

Algorithm 3.2.2. (Unsigncryption)

Input: (dB, PA, c, s)

Output: t

1. Bob recieves the values c, r and s from Alice. It uses the values r and s, his

secret key dB, Alice’s public key PA, and u to calculate a hash value of 128

bits.

z = h(PA.x
r)sdB mod u

Then 128 bit hash value is divided into two 64 bit pieces that give him

(z1, z2). This key pair is the same as the key pair generated on Alice side.
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2. For decryption of ciphertext c, Bob uses the key z1, which will give him the

message t.

t = Dz1(c)

3. Bob will verify the evaluation

r = Hkz2(t)

It means that the message t was actually signed and sent by Alice, if its

match. Unless Bob understands that either Alice did not sign the message

or an attacker intercepted and changed it.

3.3 An Efficient and Authentication Signcryp-

tion Scheme Based on Elliptic Curves

In this section, “An efficient and authentication signcryption scheme based on

elliptic curves” by Kumar and Gupta [43] will be reviewed. Before describing

this scheme, some notations which are very helpful to understand this scheme are

presented.

Notations

• G : Elliptic curve base point

• n : Order of base point G where n ·G = O

• h : One way hash function

• Ek : Symmetric Encryption using key k

• Dk : Decryption algorithm using key k

• m : message

• c : ciphetext
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Key Generation

Alice (Sender)

1. Alice selects her secret key dA from the set {1, 2, . . . , n− 1}.

2. Alice compute her public key as PA = dA ·G.

Bob (Receiver)

1. Bob selects his secret key dB from the set {1, 2, . . . , n− 1}.

2. Bob compute his public key as PB = dB ·G.

Algorithm 3.3.1. (Signcryption)

Input: (dA, PB,m)

Output: (c, s, R)

1. Select random integer k ∈ {1, 2, . . . , n− 1}.

2. Using the integer k calculate the elliptic curve point K = k · PB = (k1, k2)

mod p.

3. Compute c = Ek1(m ‖ EdA(h(m))).

4. Compute r = h(c, k2).

5. Compute s = k
r+dA

mod n.

6. Compute R = r ·G.

7. Send message (c, s, R).

Algorithm 3.3.2. (Unsigncryption)

Input: (dB, PA, c, s, R)

Output: (K,m)

1. Calculate K = dB · s ·R + dB · s · PA = (k1, k2).
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2. Calculate r′ = h(c, k2).

3. Calculate m = Dk1(c).

4. Accecpt the ciphertext as valid if R = r′ · PA.

3.3.1 Correctness

This scheme is devoted to the proof of the correctness of the scheme.

Theorem 3.1. Message decryption is valid if the receiver confirms the following

equation K = dB · s · (R + PA) mod n.

Proof:

dB · s · (R + PA) = dB ·
k

r + dA
(r ·G + dA ·G) mod n

= dB ·
k ·G
r + dA

(r + dA)

= k · (dB ·G)

= k · PB

= K

3.3.2 Security Analysis

The following are the components of the security analysis to be considered.

1. Confidentiality: Confidentiality refers to the process of protecting the con-

tent of a communication against unauthorized access. If an unauthorized person

wishes to deduce the secret key k1 of Step (2) of Signcryption Algorithm 3.3.1. He

must required to solve ECDLP, which is impossible to solve.

2. Authentication: The scheme provides authentication by including the cer-

tificate authority in the verification of both the receiver’s and sender’s public keys.

To check the validity of received messages, the receiver utilises the sender’s public

key PA.
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3. Integrity: Integrity is the process of ensuring that data is not altered by

unauthorised individuals while in transit. If the message content is altered, the

ciphertext C is replaced with C
′
, and the associated message m is replaced with

m′ in Step (3) of 3.3.1. It is computationally infeasible due to the one-way hash

function’s characteristic. When the message is verified, this modification is dis-

covered, and the message is denied. As a result, the other message’s integrity is

validated.

4. Unforgeability: Dishonest Bob is the most potent attacker in this technique

to fabricate a signcrypted message, because he is the only person who knows the

private key dB, which is necessary to directly verify a signcryption from Alice. A

signcrypted text (c, s, R) is provided. Bob may decrypt the cipher string c using

his private key dB and acquire (m, s,R). ECDSA is unforgeable against adaptive

attack. As a result, it is unforgeable.

5. Non-repudiation: Non-repudiation is the guarantee that someone cannot

refute anything. In this scenario, if the sender denies that the communication

was sent, the recipient might submit (R, s, c) requested by the judge to verify. If

equation (k1, k2) = s − dBR holds during the judge verification phase, the judge

can decide that the signature was produced by the sender. The property of non-

repudiation is therefore ensured.

6. Forward secrecy: If an opponent gets dA, he or she will be unable to de-

code previous communications. Prior to the breach, previously recorded values of

(c, s, R) cannot be decrypted since the adversary using dA will need to calculate

dB to decode. Solving the ECDLP, which is computationally infeasible, is required

to calculate dB.

7. Public verification: Only Alice’s public key is required for verification.

Every system user is supposed to have access to all public keys through a certify-

ing authority or a public directory. An interactive zero-knowledge key exchange

protocol is required for the proposed scheme. This attribute is very essential for

security.
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3.4 Generalized Signcryption

For a secure message delivery not all messages need both confidentiality and au-

thenticity. Some messages may just require signatures, while others may only

require encryption. In 2006, Han and Yang [30] proposed a scheme which pro-

vides the flexibility of signcryption scheme, encryption scheme, signature scheme

as required and this scheme is known as generalized signcryption. When both con-

fidentiality and authenticity are required at the same time, this scheme performs

double functions and when just confidentiality and authenticity are required, it

performs a single encryption/signature function without any modifications or ad-

ditional calculation. In specific circumstances, a generalized signcryption scheme

will be equal to a signature or encryption scheme. There are three possible sce-

narios: (i) signcryption (ii) signature-only (iii) encryption-only. The challenge of

identifying the three situations is a significant one. Performing the authentication

process in a public key environment necessitates the knowledge of the sender’s

public and private keys. The encryption procedure necessitates the knowledge of

a specific recipient (public key and private key).

3.4.1 Elliptic Curve Based Generalized Signcryption Scheme

In this section, elliptic curve based generalized signcryption scheme (ECGSC) will

be discussed. It is the first generalized signcryption scheme proposed by Han and

Yang [30].

Global Parameters

The scheme parameters are given below.

1. G is the base point of order n.

2. P = x′G represents the scalar multiplex.

3. The term parallel refers to the connection of two messages.
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4. ∈ T indicates selecting an element from a set.

5. Bind refers to the identity of Alice and Bob.

6. (0, 1)v indicates the binary sequence of length v.

7. Menc,Mmac,Msign is a binary sequence.

8. I : (0, 1)∗ → Z∗q and M : Z∗q → (0, 1)Z+∗ denotes two hash functions.

9. LI(.) : (0, 1)∗ → (0, 1)v+z are long digest hash functions.

10. NBDk′ : (0, 1)v × (0, 1)u × (0, 1)z denotes message authenticate function

which has key k′. | k′ |= u, | n |= v, v+ | NBD(.) |=| LI(x′2) | -These hash

functions have property I(0)→ 0,M(0)→ 0, LI(0)→ 0, NBD(0)→ 0

Key Generation

1. Alice selects private key dA from the range {1, 2, . . . n − 1} and compute

public key as PA = dA.G.

2. Bob selects private key dB from the range {1, 2, . . . n−1} and compute public

key as PB = dB.G.

Algorithm 3.4.1. (Generalized Signcryption)

Input: (m, dA, PB)

Output: w

1. k′ ∈T {1, 2, ..., n− 1}

2. T = k′G = (x′1, y
′
1), r

′ = x′1 mod q

3. k′.PB = (x′2, y
′
2)

4. Menc = LI(x′2), (Mmac,Msign) = M(y′2)
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5. If dA = 0, s = 0, Else s = k′−1(I(n ‖ Bind ‖Msig) + r′dA) mod n

6. f = NBDMmac(m)

7. c = (m ‖ f)
⊕

Menc

8. Return z = (c, T, s).

Algorithm 3.4.2. (Generalized Unsigncryption)

Input: (dB, PA, z)

Output: m

1. r = x′(T )(T ′s x′ axiom).

2. (x′2, y
′
2) = dBT

3. Menc = LI(x′2), (Mmac,Msig) = M(y′2)

4. (m ‖ f) = c
⊕

Menc

5. f ′ = NBDMmac(m), If f 6= f ′, return ⊥ else if s = 0, return m.

6. t1 = s−1I(m ‖ Bind ‖Msig), t2 = s−1r′

7. T ′ = t1G + t2PA, If T ′ 6= T , return ⊥ ,else return m.

Signature only Mode

ECGSC scheme will become ECDSA scheme when dB = 0, PB = 0.

SC(m, dA, 0)

1. k′ ∈T {1, 2, ..., n− 1}

2. T = k′G = (x′1, y
′
1), r

′ = x′1 mod q

3. s = (k′)−1(I(m) + r′dA) mod n
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4. m = (m ‖ 0)
⊕

0

5. Return z = (m,T, s).

Verification

Any receiver can verify as follows:

DSC(z, 0, PA)

1. (m ‖ 0) = m
⊕

Menc

2. t1 = s−1I(m), t2 = s−1r′

3. T ′ = t1G + t2PA,

4. If T ′ 6= T , return ⊥.

Encryption only Mode

ECGSC scheme will become encryption scheme when dA = 0, PA = 0.

SC(m, 0, PB)

1. k′ ∈T {1, 2, ..., n− 1}

2. T = k′G = (x′1, y
′
1), r

′ = x′1 mod q

3. k′.PB = (x′2, y
′
2)

4. Menc = LI(x′2), (Mmac,Msign) = M(y′2)

5. f = NBDMmac(m)

6. c = (m ‖ f)
⊕

Menc

7. Return z = (c, T ).
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Decryption

To get the plaintext m the receiver runs the decryption algorithm.

DSC(z, dB, 0)

1. (x′2, y
′
2) = dBT

2. Menc = LI(x′2), (Mmac,Msig) = M(y′2)

3. (m ‖ f) = c
⊕

Menc

4. f ′ = NBDMmac(m)

5. If f 6= f ′, return ⊥.

3.4.2 Correctness

Theorem 3.2. (Encryption only Mode)

The message decryption is valid if receiver confirms the following equation k′PB =

dBT .

Proof:

dBT = dB(k′G) = k′(dBG) = k′PB

Theorem 3.3. (Signature only Mode)

If the receiver confirms the following equation T = t1G + t2PA then the signature

is valid.

Proof: Consider the equation s−1 = k′(I(n ‖ Bind ‖Msig) + r′dA)−1.

Let h = (I(n ‖ Bind ‖ Msig)) ⇒ s−1 = k(h + r′dA)−1 then t1 and t2 becomes
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t1 = k′(h + r′dA)−1h and t2 = k′(h + r′dA)−1r′

Now consider the equation

t1G + t2PA = t1G + t2dAG

= G(t1 + t2dA)

= G(k′h(h + r′dA)−1 + k′r′dA(h + r′dA)−1)

= k′G(h + r′dA)(h + r′dA)−1

= k′G

= T



Chapter 4

A New Generalized Signcryption

Scheme Based on Elliptic Curves

In this chapter, a proposed generalized signcryption scheme will be discussed. The

proposed scheme is the extension of Kumar and Gupta’s scheme [43]. Later, a toy

example will be discussed for better understanding of this scheme.

4.1 The Proposed Generalized Signcryption Scheme

The signcryption scheme of Kumar and Gupta [43] works effectively when both

confidentiality and authenticity are required. The proposed scheme provides extra

features, it works in signcryption only mode if both confidentiality and authenticity

are required and works in encryption only mode or signature only mode if one of

them is required. The following steps described this scheme.

Global Settings

The golabal parameters are presented to the participants Alice and Bob. These

parameters are shown in Table 4.1.

44



Proposed Generalized Signcryption Scheme 45

p A large prime number greater than 2160

Fp Finite field of order p

Ep(a, b) Elliptic curve defined on Fp

G A base point of order n where nG = O

h A one way hash function

Ek Symmetric Encryption using key k

Dk Decryption algorithm using key k

Table 4.1: Global parameters

Key Generation

Alice (Sender)

1. Alice selects her secret key dA from the set {1, 2, . . . , n− 1}.

2. Alice compute her public key as PA = dA ·G mod p.

Bob (Receiver)

1. Bob selects his secret key dB from the set {1, 2, . . . , n− 1}.

2. Bob compute his public key as PB = dB ·G mod p.

Algorithm 4.1.1. (Generalized Signcryption)

Input: (dA, PB,m)

Output: (R, c, s,Q)

1. Select random integers r1, r2 ∈ {1, 2, ..., n− 1}.

2. Using the integer r1 calculate the elliptic curve point

T = r1 · PB = (T1, T2) mod p

3. Using the integer r2 calculate the elliptic curve point R = r2 ·G mod p.
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4. Using private key of Alice dA and public key of Bob PB compute

k = dA · PB = (k1, k2) mod p

5. Using key k1 and R compute the elliptic curve point k∗ = k1 · R = (k3, k4)

mod p.

6. Using symmetric key encryption, encrypt the plaintext message m into ci-

phertext c by using k3 as c = Ek3(m) mod n.

7. By using one way hash function calculate r = h(c, T2) mod n.

8. Compute the digital signature s = r1
r+dA

mod n.

9. Compute Q = r ·G.

10. Send message (R, c, s,Q) to Bob.

Algorithm 4.1.2. (Generalized Unsigncryption)

Input: (dB, PA, R, c, s, Q)

Output: (m,T )

1. Validate the Alice public key PA by using Bob’s certificate.

2. Using private key of Bob dB and public key of Alice PA regenerate

k = dB · PA = (k1, k2) mod p

3. Using key k1 and R compute the elliptic curve point k∗ = k1 · R = (k3, k4)

mod p.

4. Using symmetric key encryption, decrypt the ciphertext message c into plain-

text by using key k3 as m = Dk3(c) mod n.

5. For the verification of digital signature s, calculate

T = dB · s · (Q + PA) = (T1, T2) mod n
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6. Calculate r′ = h(c, T2) mod n.

7. Accept the ciphertext as valid if r = r′ otherwise reject.

The different steps of signcryption are also explained in Table 4.4.

Signcryption Unsigncryption

T = r1 · PB = (T1, T2) k = dB · PA = (k1, k2)

R = r2 ·G k∗ = k1 ·R = (k3, k4)

k = dA · PB = (k1, k2) m = Dk3(c)

k∗ = k1 ·R = (k3, k4) T = dB · s · (Q + PA) = (T1, T2)

c = Ek3(m) r′ = h(c, T2)

r = h(c, T2) Accept the ciphertext if r = r′

s = r1
r+dA

mod n

Q = r ·G mod p

Send (R, c, s,Q)

Table 4.2: Generalized Signcryption

Signature only Mode

Setting r2 = 0 the proposed scheme will become ECDSA scheme.

1. Select random integer r1 ∈ {1, 2, ..., n− 1}.

2. Using the integer r1 compute T = r1PB = (T1, T2) mod p.

3. Get c = m.

4. Compute the hash value r = h(c, T2) mod n.

5. s = r1
r+dA

mod n.

6. Calculate Q = rG mod p.

7. Send text (s,Q) to Bob.
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Verification

Receiver can verify the content of received message (s,Q).

1. Using Bob’s certificate to validate the sender’s public key.

2. Calculate T = dBs(Q + PA) = (T1, T2) mod n.

3. By using one way hash function, calculate r′ = h(c, T2) mod n.

4. Accept ciphertext as valid if r = r′.

Signature Verification

T = r1 · PB = (T1, T2) mod p T = dB · s · (Q + PA) = (T1, T2) mod n

r = h(c, T2) mod n r′ = h(c, T2) mod n

s = r1
r+dA

mod n Accept if r = r′

Q = r ·G mod p

Table 4.3: Signature only mode

Encryption only Mode

Setting r1 = 0 then the proposed scheme will become encryption scheme.

1. Select a random integer r2 ∈ {1, 2, ..., n− 1}.

2. Compute R = r2 ·G mod p.

3. Compute k = dA · PB = (k1, k2) mod p.

4. Compute k∗ = k1 ·R = (k3, k4) mod p.

5. Compute c = Ek3(m) mod n.

6. Send text (c, R) to Bob.
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Decryption

To get the plaintext message m the receiver runs the decryption algorithm.

1. Using Bob’s certificate to validate the sender’s public key.

2. Regenerate the key k = dB · PA = (k1, k2) mod p.

3. Compute the key k∗ = k1 ·R = (k3, k4) mod p.

4. Compute m = Dk3(c) mod n.

Encryption Decryption

R = r2 ·G mod p k = dB · PA = (k1, k2) mod p

k = dA · PB = (k1, k2) mod p k∗ = k1 ·R = (k3, k4) mod p

k∗ = k1 ·R = (k3, k4) mod p m = Dk3(c) mod n

c = Ek3(m) mod n

Table 4.4: Encryption only mode

4.1.1 Correctness

The correctness of the scheme described in the following theorems.

Theorem 4.1. (Signature only Mode)

If the receiver confirms the following equation than the signautre is valid.

T = r1 · PB mod p

Proof:

T = dB · s · (Q + PA)

= dB ·
r1

r + dA
· (r ·G + dA ·G)

= dB ·
r1 ·G
r + dA

(r + dA)

= r1 · (dB ·G)

= r1 · PB
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Theorem 4.2. (Encryption only Mode)

If the receiver confirms the following equation than message decryption is valid.

dB · PA = dA · PB mod p

Proof:

dB · PA = dB · dA ·G

= dA · (dB ·G)

= dA · PB

4.2 A toy Example

In this section, a toy example is given to illustrate how a message is signcrypted

using above proposed scheme.

Example 4.2.1.

Alice want to send a message m = 15 to Bob in a confidential and authenticated

manner. For this consider an eliptic curve y2 = x3 + 750x + 188 mod 751 where

a = 750, b = 188 and p = 751. The elliptic curve group generated by Ep(a, b) =

E751(750, 188).

Let G = (0, 376) be the base point of elliptic curve and n = 727 be the order of base

point G where 727(0, 376) = O. The total number of points of this elliptic curve

is also 727. The following steps must be performed for signcrypting a message.

Key Generation Phase

1. Alice choose her private key dA = 10 and compute public key as

PA = dA ·G = 10(0, 376) = (57, 332) mod 751
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2. Bob choose his private key dB = 2 and compute public key as

PB = dB ·G = 2(0, 376) = (1, 376) mod 751

Generalized Signcryption

1. Select randomly integers r1 = 3 and r2 = 4.

2. Compute T = r1 · PB = 3(1, 376) = (6, 390) = (T1, T2) mod 751.

3. Compute R = r2 ·G = 4(0, 376) = (2, 373) mod 751.

4. Compute k = dA · PB = 10(1, 376) = (731, 529) = (k1, k2) mod 751.

5. Compute k∗ = k1 ·R = 731(2, 373) = (197, 107) = (k3, k4) mod 751.

6. Using symmetric key encryption AES compute

c = Ek3(m) = E197(15) = 592 mod 727

7. Using SHA-1 calculate the hash value

r = h(c, T2) = h(592, 390) = 429 mod 727

8. Calculate the signature s as:

s =
r1

r + dA
mod n

=
3

429 + 10
mod 727

= 3(439)−1

= 3(260)

= 53

9. Compute Q = r ·G = 429(0, 376) = (182, 667) mod 751
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Generalized Unsigncryption

1. Compute k = dB · PA = 2(57, 332) = (731, 529) = (k1, k2) mod 751.

2. Compute k∗ = k1 ·R = 731(2, 373) = (197, 107) = (k3, k4) mod 751.

3. Compute m = Dk3(c) = D197(592) = 15 mod 727.

4. Regenerate the key T as:

T = dB · s · (Q + PA) mod n

= (2)(53)[(182, 667) + (57, 332)] mod 727

= 106(232, 701)

= (6, 390)

= (T1, T2)

5. Compute r′ = h(c, T2) = h(592, 390) = 429 mod 727.

6. As r = r′, therefore accecpt the ciphertext.



Chapter 5

Analysis of the Proposed Scheme

In this chapter, the security attributes “confidentiality, authenticity, integrity, non-

repudiation, unforgeability, forward secrecy” will be discussed. Later on, the com-

putational cost of the proposed scheme with different existing scheme and attack

analysis will also be discussed.

5.1 Security Attributes

All of the security requirements are met by the proposed scheme, which are based

on the assumptions that it is difficult to solve ECDLP and ECDHP.

5.1.1 Confidentiality

The proposed scheme offers secrecy if an attacker attacks to original message then

the private key k3 must be retrieved. If he gets k1, an attacker will compute k3

from Step (5) in Generalized Signcryption Algorithm 4.1.1. He must know the dA

(private key of A) for k1, which is not possible. Therefore, he can not obtain the

original message.

5.1.2 Authenticity

The proposed scheme provides authentication by including the certificate authority

in the verification of both the receiver’s and sender’s public keys. To check the
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authenticity of messages that have been received, the receiver utilises the sender’s

public key PA.

5.1.3 Integrity

Integrity is provided by the proposed scheme. The recipient will check that the

message m hasn’t been tampered with throughout the transmission phase after

getting the signcrypted text. In Step (4) of the Generalized Signcryption Algo-

rithm 4.1.2, if an intruder alters the encoded message c to c′, r′ changes to r′′. The

produced r′ in Step (6) of 4.1.2 is not going to be validated as a result of these

modifications. If the encoded message c is modified, the recipient will be aware

that the message has been moderated during transit.

5.1.4 Non-repudiation

When there is a disagreement between two parties, the recipient can transmit

(c, s,Q) to check the validity of m. Utilising r′ in Step (6) of 4.1.2, the judge will

have the ability to authenticate the validity of m. In Step (8) of 4.1.1, the secret

random number r1 is used to generate the signature s, which is only known by

the sender. As a result, Alice will be unable to refute that she is the sender of the

communication.

5.1.5 Unforgeability

Unforgeability is a feature of the proposed scheme. Without the sender’s secret

key, the opponent is unable construct a appropriate (c, s,Q) of his choice. Suppose

that an attacker takes any m′ and creates (c, s,Q) of his choice. However, without

knowing the private number r1 in Step (2) of 4.1.1, he will be unable to create a

valid signature. As a result, the signature will not be verified by the Generalized

Unsigncryption Algorithm 4.1.2.
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5.1.6 Forward Secrecy

If the sender’s secret key dA is exposed, an opponent will be unable to get any

message m from it, because the preceding signcrypted text contains a concealed

random number r2. Interpreting r2 necessitates solving ECDLP. In addition, every

time m is to be signcrypted, the scheme needs a change in the random number r2.

This guarantees the capability of the proposed scheme for forward secrecy.
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Zheng [10] X X X X 7 7

Elkamchochi [61] X X X X 7 7

Bao and deng [16] X X X X 7 7

Zheng and Imai [13] X X X X 7 7

Han et al. [30] X X X X X 7

Zhou [62] X X X X X 7

Gamage et al. [17] X X X X X 7

Jung et al. [63] X X X X 7 7

Mohamed [27] X X X X X 7

Kumar and Gupta [43] X X X X X X

Proposed X X X X X X

Table 5.1: Comparison of the proposed scheme with different existing schemes

5.2 Efficiency

We equate the proposed GSC with different existing schemes, and compare the

computational cost. The numerical values in below table shows that the how many

times an operation involved in a scheme.
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Schemes HS EM EA ME MD MM MA

Zheng [10] 4 - - 3 1 2 1

Han [30] 4 5 1 - 2 4 3

Elkamchochi [61] 6 - - 3 1 4 1

Bao and Deng [16] 6 - - 5 1 1 1

Zheng and Imai [13] 4 3 1 - 1 3 1

Zhou [62] 6 6 7 - 1 4 2

Jung [63] 4 - - 5 1 1 1

Mohamed [27] 6 6 1 - 1 - 1

Gamage [17] 4 - - 5 1 1 1

Lal and Kushwa [64] 8 5 1 - 3 3 2

Kumar and Gupta [43] 4 4 1 2 1 2 1

Proposed 2 8 1 - 1 1 1

Table 5.2: Comparison of proposed scheme operations with different existing
schemes

HS: One way hash function, EA: Elliptic curve point addition, EM: Elliptic curve

point multiplication, MD: Modular division, ME: Modular exponentiation, MA:

Modular addition, MM: Modular multiplication.

5.2.1 Computational Cost

The smaller key length is the main advantage of ECC which provides the same level

of security over Elgamal [8] and RSA [7]. Another benefit is that it removes the

need for storage. Signature generation in the proposed scheme requires only one

hash value computation and basic arithmetic computations. Table 5.2 provides

a comparison of the number of main operations included in the proposed scheme

against existing schemes. In [65] using the “Cantroller Infineons SLE66CUX640P”

a single eliptic curve point multiplication operation takes 83 milliseconds, while

a single modular exponentiation takes 220 milliseconds. Table 5.3 compared the
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computational cost of proposed scheme versus current signcryption schemes. Fur-

thermore, the proposed scheme has extra features then existing schemes.

Schemes Computational time (ms) Features

Zheng [10] 3× 220 = 660 SC

Han [30] 5× 83 = 415 SC

Elkamchochi [61] 3× 220 = 660 SC

Bao and deng [16] 5× 220 = 1100 SC

Zheng and Imai [13] 3× 83 = 249 SC

Zhou [62] 6× 83 = 498 SC

Jung [63] 5× 220 = 660 SC

Mohamed [27] 6× 83 = 498 SC

Gamage et al. [17] 5× 220 = 1100 SC

Kumar and Gupta [43] 4× 83 = 332 SC

Lal and Kushwa [64] 5× 83 = 415 GSC

Proposed 8× 83 = 664 GSC

Table 5.3: Comparison of computational time (in ms) of the proposed gener-
alized signcryption scheme (GSC) with existing signcryption (SC) schemes

5.3 Attack Analysis

In this section, the proposed scheme is analyzed, and it is revealed to be vulnerable

to a number of known assault.

5.3.1 Chosen Plaintext Attack

This type of attack is utilized, when an adversary picks a message and gets the

ciphertext associated with it. To figure out the hidden key, the attacker explores
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the link among the original message and the corresponding ciphertext. This is a

powerful attack since the adversary may deduce the private key from the produced

ciphertext using any message. An adversary receives a pair of “(c,m)”, he attempts

to estimate the private key dA. Given m and c, the attacker must solve ECDLP

in order to find a dA, which is computationally infeasible.

5.3.2 Ciphertext only Attack

An attacker receives the ciphertext message from publicly accessible information

in this attack model and attempts to produce the actual plaintext message m

or private key dA. Later on, once the private key is revealed, he obtains all

the original messages as ciphertext. If an opponent receives the ciphertext in

the proposed scheme, he then seeks to acquire the private key or the plaintext

message. In order to find dA, the adversary must solve ECDLP when ciphertext c

and public parameter r is given, which is computationally infeasible. Consequently,

the attacker cannot generate the original message m without knowing the secret

key of the sender.

5.3.3 Chosen Ciphertext Attack

In this attack, an intruder can pick different ciphertexts of his choice and can

obtain their corresponding plaintexts. The attacker’s simple objective is to retrieve

the private key or get the communication involved in the secret parameters. An

attacker selects the ciphertext c of his choice in the proposed scheme and obtains

its corresponding original message m. Being given c and m, dA is not possible to

find, since it requires another k1. In Step (5) of 4.1.1, the attacker tries to find

k∗ = k1R, then he must have r2 which is the secret random number. But R = r2G,

calculating r2 again requires solving ECDLP, which with the specified settings of

the proposed scheme is computationally infeasible. So, the proposed scheme is

resistant to this assault.
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5.3.4 Forgery Attack

An attacker intercepts the sender’s and receiver’s network correspondence in this

attack model. The attacker’s goal is to alter or substitute the original message

with the intended message in such a manner that the unsigncryption algorithm

verifies it correctly. Assume an attacker intercepts network communication be-

tween the sender and the recipient in the proposed scheme. The intruder changes

and produces the signcrypted text of his choosing (c
′
, s

′
, r

′
) and transmits it to the

recipient, but the unsigncryption algorithm is unable to check the validity of the

received message. In particular, in Generalized Signcryption Algorithm 4.1.1, the

generation of the s involves hidden number r1, and secret key of sender dA that

are not known to an adversary. Therefore, the bogus signcrypted text can not be

checked by 4.1.2 without using these secret parameters. Hence, the forgery attack

on the proposed scheme can not be mounted.

5.3.5 Man in the Middle Attack

An opponent engages himself in the conversation between the sender and the

recipient. The adversary’s goal is to either generate a shared mutual secret key

or alter the sent data. In communication, a powerful authentication protocol is

used for protection against this kind of attack. In the proposed scheme, assume

that an opponent tries to manipulate the mutual secret key generation process.

He choose his secret key dM for this reason and calculates his public key PM =

dMG as an elliptic curve point. He must establish a separate and trustworthy

connection with both the sender and the recipient after eavesdropping on the

sender’s and recipient’s network communications. Firstly, through his public key

PM , the adversary attempts to establish a shared private key. But for either of

the sender or recipient, he will be unable to create a valid mutual secret key, since

it contains the hidden number r2 in Step (3) of 4.1.1, which only a genuine sender

has access to.



Chapter 6

Conclusion

In this thesis, firstly we review the Kumar and Gupta’s signcryption scheme [43].

This scheme provides confidentiality and authenticity at same time. We extend

this signcryption scheme to a generalized signcryption scheme. The proposed

scheme provides the flexibility of signcryption scheme, encryption scheme, signa-

ture scheme as required. When both confidentiality and authenticity are required

at the same time, the proposed scheme performs double functions and when just

confidentiality and authenticity are required, it performs a single encryption/sig-

nature function without any modifications or additional calculation. Compared to

the existing signcryption schemes, the proposed generalized signcryption scheme

is more efficient because it has extra additional features. The proposed scheme’s

security depends on ECDLP, which is very secure. The proposed scheme’s security

shows that it is resistant to a variety of known assaults. The suggested scheme

provides all of the security attributes. In future aspects generalized signcryption

can be extended to a blind signcryption.
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